Robots that move
(with Rust)



Ross Gardiner, Software Engineer @ Monumental












High level plans Convert to low level streams of data Execute the instructions

‘Move the robot along ‘Send the elbow motor to 45 ‘Motor driver, start moving to 45
this path in space’ degrees’ degrees’
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Transforming points with matrices
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Transforming points with matrices
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Transforming points with matrices
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end effector

-5 deg 20mm
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translate 200mm
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translate 20mm
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FABRIK step 0
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FABRIK step 1 (backward pass) - Link stretched/compressed
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FABRIK step 2 (backward pass) - Joint corrected
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FABRIK step 3 (backward pass) - Link stretched/compressed
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FABRIK step 4 (backward pass) - Joint corrected
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FABRIK step 5 (backward pass) - Link stretched/compressed
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FABRIK step 6 (backward pass) - Joint corrected
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FABRIK step 7 (backward pass) - Link stretched/compressed
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FABRIK step 8 (backward pass) - Joint corrected
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FABRIK step 9 (backward pass) - Link stretched/compressed
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FABRIK step 10 (backward pass) - Joint corrected
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FABRIK step 11 (forward pass) - Link stretched/compressed
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FABRIK step 12 (forward pass) - Joint corrected
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FABRIK

t until converged:
# Backward pass
yint: = target
il from n-2 down to 0:
= distance(joints[1+1], joints[1i])
= lengths[t] 7iin

= *joints[1+1] + t*joints[i]

# Forward pass
1'ts[0] = base
1 from 1 to n-1:
= distance(joints[i], joints[i-1])
1engths[1 1] / r
(1] = *joints[1-1] + t*joints[1i]




Jacobians
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Many solutions
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More complex cases




Pathfinding




Pathfinding has constraints




Pathfinding can be really really complicated




Pathfinding can
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AnytimePathShortening (APS)
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be really really complicated



A simple approach: Rapidly Exploring Random Trees (RRT)





https://docs.google.com/file/d/1DQI9z-fLy-7ZDqxcEkwlb5eoWCiJo8Mq/preview

Path planning with Rust

oxmpl



Try it out: rossng.eu/oxmpl-js-demo/

OxMPL Motion Planning Demo

Try out some path planning algorithms from OxMPL in 2D.

Planner Algorithm:

RRT*

Timeout (seconds): 5

Plan Path

J\/@




What's left?

- Calibration
- Your kinematics model is a white lie - assembly errors; flex etc.
- Motion control
- Motors can only accelerate and decelerate at certain speeds -
how do you make the end effector actually move along the
desired path?
- Vision
- Where is the robot in the world? Where is the thing it needs to
reach?
- and much more...





https://docs.google.com/file/d/1_lGBj8VZZRMCXu77JEsQBoRWC4slHwQl/preview

