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Transforming points with matrices
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Transforming points with matrices

nalgebra
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Many solutions



More complex cases



Pathfinding



Pathfinding has constraints



Pathfinding can be really really complicated



Pathfinding can be really really complicated
PRM
LazyPRM
PRM*
LazyPRM*
SPARS
SPARS2
RRT
RRTConnect
RRT*
RRT#
RRTX
LBTRRT
SST
T-RRT
VF-RRT
pRRT
LazyRRT
TSRRT
EST
SBL
pSBL
KPIECE
BKPIECE
LBKPIECE
STRIDE
PDST
FMT*
BFMT*
Informed RRT*
BIT*
ABIT*
AIT*
EIT*
ST-RRT*
CForest
AnytimePathShortening (APS)
RRT (control)
SST (control)
EST (control)
KPIECE (control)
PDST (control)
Syclop
SyclopRRT
SyclopEST
LTLPlanner
QRRT
QRRT*
QMP
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A simple approach: Rapidly Exploring Random Trees (RRT)



https://docs.google.com/file/d/1DQI9z-fLy-7ZDqxcEkwlb5eoWCiJo8Mq/preview


Path planning with Rust

oxmpl



Try it out: rossng.eu/oxmpl-js-demo/



What’s left?

- Calibration
- Your kinematics model is a white lie - assembly errors; flex etc.

- Motion control
- Motors can only accelerate and decelerate at certain speeds - 

how do you make the end effector actually move along the 
desired path?

- Vision
- Where is the robot in the world? Where is the thing it needs to 

reach?
- and much more…



https://docs.google.com/file/d/1_lGBj8VZZRMCXu77JEsQBoRWC4slHwQl/preview

