
Robots that move
(with Rust)



Ross Gardiner, Software Engineer @ Monumental









Control UI Robot compute Hardware

High level plans

‘Move the robot along 
this path in space’

Convert to low level streams of data

‘Send the elbow motor to 45 
degrees’

Execute the instructions

‘Motor driver, start moving to 45 
degrees’



Control UI

TypeScript
React

Electron

Rust
WASM

Robot compute

Rust middleware
‘Arcade’

Vision Other services

Microcontrollers
(C++ 😞)

Hardware

Motor Sensor Motor



Control UI Robot compute Hardware

High level plans

‘Move the robot along 
this path in space’

Convert to low level streams of data

‘Send the elbow motor to 45 
degrees’

Execute the instructions

‘Motor driver, start moving to 45 
degrees’



link

joint

end effector

origin



10 deg0 deg

10 deg
-5 deg

100mm

20mm

where am I?



Transforming points

x

y

Translate by (500, 300)

 (0,0)

 (500, 300)



Transforming points

x

y

Rotate by 90 degrees

 (100,0)

 (0,100)



Transforming points with matrices



Transforming points with matrices

x

y

 (0,0)

 (500, 300)

x

y

 (100,0)

 (0,100)



Transforming points with matrices

nalgebra



10 deg
-5 deg 20mm

rotate 10 degrees
translate 200mm
rotate -5 degrees
translate 100mm
translate 20mm 

200mm
100mm

end effector



? deg
? deg ? deg

200mm
100mm

target

100mm





























FABRIK

bevy_fabrik

DIY



Jacobians

k



Many solutions



More complex cases



Pathfinding



Pathfinding has constraints



Pathfinding can be really really complicated



Pathfinding can be really really complicated
PRM
LazyPRM
PRM*
LazyPRM*
SPARS
SPARS2
RRT
RRTConnect
RRT*
RRT#
RRTX
LBTRRT
SST
T-RRT
VF-RRT
pRRT
LazyRRT
TSRRT
EST
SBL
pSBL
KPIECE
BKPIECE
LBKPIECE
STRIDE
PDST
FMT*
BFMT*
Informed RRT*
BIT*
ABIT*
AIT*
EIT*
ST-RRT*
CForest
AnytimePathShortening (APS)
RRT (control)
SST (control)
EST (control)
KPIECE (control)
PDST (control)
Syclop
SyclopRRT
SyclopEST
LTLPlanner
QRRT
QRRT*
QMP
QMP*
SPQR



A simple approach: Rapidly Exploring Random Trees (RRT)



https://docs.google.com/file/d/1DQI9z-fLy-7ZDqxcEkwlb5eoWCiJo8Mq/preview


Path planning with Rust

oxmpl



Try it out: rossng.eu/oxmpl-js-demo/



What’s left?

- Calibration
- Your kinematics model is a white lie - assembly errors; flex etc.

- Motion control
- Motors can only accelerate and decelerate at certain speeds - 

how do you make the end effector actually move along the 
desired path?

- Vision
- Where is the robot in the world? Where is the thing it needs to 

reach?
- and much more…



https://docs.google.com/file/d/1_lGBj8VZZRMCXu77JEsQBoRWC4slHwQl/preview

