Robots that move
(with Rust)

Ross Gardiner, Software Engineer @ Monumental

High level plans Convert to low level streams of data Execute the instructions

‘Move the robot along ‘Send the elbow motor to 45 ‘Motor driver, start moving to 45
this path in space’ degrees’ degrees’

Rust middleware Microcontrollers
‘Arcade’ (C++ =)

TypeScript
React
Electron

Vision Other services Motor Sensor Motor

plans Convert to low level streams of data EXxec

ot along ‘Send the elbow motor to 45 ‘Motor di
space’ degrees’

end effector

100mm

where am |?

-5 deg 20mm

Transforming points

y
(500, 300)
T Translate by (500, 300)
G =

Transforming points

y

(0.100) @

Rotate by 90 degrees

&—
(100,0)

Transforming points with matrices

1 0 500
T(500,300) = [0 1 300
0O O 1

cos 90° —sin90°

R(90°) = | sin90° cos90°
0 0

Transforming points with matrices

1 0 500
0 1 300

0

0
1
0

0

|

(0
0
\1/
/100\
0

/500\

300

\ 1/

\ 1/
/0\

\ /

0000000

Transforming points with matrices

1 0 500
0 1 300

0 O

1

|

(0
0
\1/
/100\
0

\ 1/

100

#9 nalgebra

100mm

end effector

-5 deg 20mm

rotate 10 degrees
translate 200mm
rotate -5 degrees
translate 100mm
translate 20mm

® target

100mm

100mm

FABRIK step 0

Target
1 O \ 4 4 @ 4 J
Root
=1 0 1 2 3 4 5

FABRIK step 1 (backward pass) - Link stretched/compressed

Link 4-5 (wrong length)
Target
Current: 4.24
i Expected: 1.00
1 O 4 @ 4
Root
—1 0 1 2 3 4 5

FABRIK step 2 (backward pass) - Joint corrected

Link 4-5 (corrected)
Previous position
Target
1 O \ 4 4
Root
=1 0 1 2 3 4 5

FABRIK step 3 (backward pass) - Link stretched/compressed

Link 3-4 (wrong length)
Target
1 Current: 2.63 |
Expected: 1.00
1 O 4 @
Root
—1 0 1 2 3 4 5

FABRIK step 4 (backward pass) - Joint corrected

Link 3-4 (corrected)
Previous position
Target
4 . &
Root
=1 0 1 2 3 4 5

FABRIK step 5 (backward pass) - Link stretched/compressed

Target

Current: 1.44
Expected: 1.00)

Link 2-3 (wrong length)

i . &
Root
=1 0 1 2 3 4 5

FABRIK step 6 (backward pass) - Joint corrected

Root

Target

Link 2-3 (corrected)
Previous position

FABRIK step 7 (backward pass) - Link stretched/compressed

Link 1-2 (wrong length)
Target
Current: 1.14
Expected: 1.00
Root
—1 0 1 2 3 4 5

FABRIK step 8 (backward pass) - Joint corrected

Link 1-2 (corrected)
Previous position

Target
Root
=1 0 1 2 3 4 5

FABRIK step 9 (backward pass) - Link stretched/compressed

Link 0-1 (wrong length)
Target
Current: 1.14
Expected: 1.00
Root
—1 0 1 2 3 4 5

FABRIK step 10 (backward pass) - Joint corrected

Link 0-1 (corrected)
Previous position
Target
Root
=1 0 1 2 3 4 5

FABRIK step 11 (forward pass) - Link stretched/compressed

Link 0-1 (wrong length)
Target
Current: 1.14
Expected: 1.00
Root
—1 0 1 2 3 4 5

FABRIK step 12 (forward pass) - Joint corrected

Link 0-1 (corrected)
Previous position
Target
Root
=1 0 1 2 3 4 5

FABRIK

t until converged:
Backward pass
yint: = target
il from n-2 down to 0:
= distance(joints[1+1], joints[1i])
= lengths[t] 7iin

= *joints[1+1] + t*joints[i]

Forward pass
1'ts[0] = base
1 from 1 to n-1:
= distance(joints[i], joints[i-1])
1engths[1 1] / r
(1] = *joints[1-1] + t*joints[1i]

Jacobians

X
26,
oY
26,
3z
26,

9q;

0X

26,
aY

96,
0z

26,
dq;

a0,
aq;
a0,
gk
20,

0X

96,
aY

96,
0z

96,
aq;

005
dq;
004
dqx
00,

X
20,
ay
96,
0Z
a6,
g
00,
dq;
00,
g
20,

0X

96
aY

965
0z

96<
dq;

d0g
aq;
d0¢
g
00-

X
96,

oY
366

dZ

30|

aq;

Many solutions

0, =180°
0,=61.88°
0,=-142.61°

—s70 (d)
=111.11°
=-168.47°
=0

457°
1L11°
-168.47°
180°
=146.06° X , =-146.06°

=37.39° =-142.61°

175.43°

-142.61°

75430 (h)

1.085° , =-91.085°

-33.05° - o 0,=-3305°
~
0° , =180°
=-144.57°
s =-142.61°

More complex cases

Pathfinding

Pathfinding has constraints

Pathfinding can be really really complicated

Pathfinding can

PRM
LazyPRM
PRM*
LazyPRM*
SPARS
SPARS2
RRT
RRTConnect
RRT*

RRT#

RRTX
LBTRRT
SST

T-RRT
VF-RRT
PRRT
LazyRRT
TSRRT

EST

SBL

pSBL
KPIECE
BKPIECE
LBKPIECE
STRIDE
PDST

FMT*

=1\ It
Informed RRT*
BIT*

ABIT*

AIT*

EIT*
ST-RRT*
CForest
AnytimePathShortening (APS)
RRT (control)
SST (control)
EST (control)
KPIECE (control)
PDST (control)
Syclop
SyclopRRT
SyclopEST
LTLPlanner
QRRT
QRRT*

QMmP

QMmP*

SPQR

be really really complicated

A simple approach: Rapidly Exploring Random Trees (RRT)

https://docs.google.com/file/d/1DQI9z-fLy-7ZDqxcEkwlb5eoWCiJo8Mq/preview

Path planning with Rust

oxmpl

Try it out: rossng.eu/oxmpl-js-demo/

OxMPL Motion Planning Demo

Try out some path planning algorithms from OxMPL in 2D.

Planner Algorithm:

RRT*

Timeout (seconds): 5

Plan Path

J\/@

What's left?

- Calibration
- Your kinematics model is a white lie - assembly errors; flex etc.
- Motion control
- Motors can only accelerate and decelerate at certain speeds -
how do you make the end effector actually move along the
desired path?
- Vision
- Where is the robot in the world? Where is the thing it needs to
reach?
- and much more...

https://docs.google.com/file/d/1_lGBj8VZZRMCXu77JEsQBoRWC4slHwQl/preview

